1,160 research outputs found

    Progress with PXIE MEBT Chopper

    Full text link
    A capability to provide a large variety of bunch patterns is crucial for the concept of the Project X serving MW-range beam to several experiments simultaneously. This capability will be realized by the Medium Energy Beam Transport's (MEBT) chopping system that will divert 80% of all bunches of the initially 5mA, 2.1 MeV CW 162.5 MHz beam to an absorber according to a pre-programmed bunch-by-bunch selection. Being considered one of the most challenging components, the chopping system will be tested at the Project X Injector Experiment (PXIE) facility that will be built at Fermilab as a prototype of the Project X front end. The bunch deflection will be made by two identical sets of travelling-wave kickers working in sync. Currently, two versions of the kickers are being investigated: a helical 200 Ohm structure with a switching-type 500 V driver and a planar 50 Ohm structure with a linear 250 V amplifier. This paper will describe the chopping system scheme and functional specifications for the kickers, present results of electromagnetic measurements of the models, discuss possible driver schemes, and show a conceptual mechanical design.Comment: 3 pp. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012. New Orleans, Louisian

    Performance Enhancement in CZTS Solar Cells by SCAPS-1D Software

    Get PDF
    This is the abstract, usually it does not have references. Usually the reader will read this part first to know what this paper is about and decide upon it to continue reading or not. The font of main text is 10 Times New Roman with single line spacing of 6 pt after and 0 pt before. The titles of sections are font 12, bold and they have single line spacing of 6pt before, 12 pt after, subsections are font 12, Italic and they have single line spacing of 6pt before, 12 pt after. Both upper line and lower line enclosing this part is paper-specific and changes according to the paper, usually it is very similar to the journal header background color, abstract contents are Times New Roman size 10, no line spacing

    Phenotypically Heterogeneous Podoplanin-expressing Cell Populations Are Associated with the Lymphatic Vessel Growth and Fibrogenic Responses in the Acutely and Chronically Infarcted Myocardium

    Get PDF
    Cardiac lymphatic vasculature undergoes substantial expansion in response to myocardial infarction (MI). However, there is limited information on the cellular mechanisms mediating post-MI lymphangiogenesis and accompanying fibrosis in the infarcted adult heart. Using a mouse model of permanent coronary artery ligation, we examined spatiotemporal changes in the expression of lymphendothelial and mesenchymal markers in the acutely and chronically infarcted myocardium. We found that at the time of wound granulation, a three-fold increase in the frequency of podoplanin-labeled cells occurred in the infarcted hearts compared to non-operated and sham-operated counterparts. Podoplanin immunoreactivity detected LYVE-1-positive lymphatic vessels, as well as masses of LYVE-1-negative cells dispersed between myocytes, predominantly in the vicinity of the infarcted region. Podoplanin-carrying populations displayed a mesenchymal progenitor marker PDGFRalpha, and intermittently expressed Prox-1, a master regulator of the lymphatic endothelial fate. At the stages of scar formation and maturation, concomitantly with the enlargement of lymphatic network in the injured myocardium, the podoplanin-rich LYVE-1-negative multicellular assemblies were apparent in the fibrotic area, aligned with extracellular matrix deposits, or located in immediate proximity to activated blood vessels with high VEGFR-2 content. Of note, these podoplanin-containing cells acquired the expression of PDGFRbeta or a hematoendothelial epitope CD34. Although Prox-1 labeling was abundant in the area affected by MI, the podoplanin-presenting cells were not consistently Prox-1-positive. The concordance of podoplanin with VEGFR-3 similarly varied. Thus, our data reveal previously unknown phenotypic and structural heterogeneity within the podoplanin-positive cell compartment in the infarcted heart, and suggest an alternate ability of podoplanin-presenting cardiac cells to generate lymphatic endothelium and pro-fibrotic cells, contributing to scar development

    Phenotypically Heterogeneous Podoplanin-expressing Cell Populations Are Associated with the Lymphatic Vessel Growth and Fibrogenic Responses in the Acutely and Chronically Infarcted Myocardium

    Get PDF
    Cardiac lymphatic vasculature undergoes substantial expansion in response to myocardial infarction (MI). However, there is limited information on the cellular mechanisms mediating post-MI lymphangiogenesis and accompanying fibrosis in the infarcted adult heart. Using a mouse model of permanent coronary artery ligation, we examined spatiotemporal changes in the expression of lymphendothelial and mesenchymal markers in the acutely and chronically infarcted myocardium. We found that at the time of wound granulation, a three-fold increase in the frequency of podoplanin-labeled cells occurred in the infarcted hearts compared to non-operated and sham-operated counterparts. Podoplanin immunoreactivity detected LYVE-1-positive lymphatic vessels, as well as masses of LYVE-1-negative cells dispersed between myocytes, predominantly in the vicinity of the infarcted region. Podoplanin-carrying populations displayed a mesenchymal progenitor marker PDGFRalpha, and intermittently expressed Prox-1, a master regulator of the lymphatic endothelial fate. At the stages of scar formation and maturation, concomitantly with the enlargement of lymphatic network in the injured myocardium, the podoplanin-rich LYVE-1-negative multicellular assemblies were apparent in the fibrotic area, aligned with extracellular matrix deposits, or located in immediate proximity to activated blood vessels with high VEGFR-2 content. Of note, these podoplanin-containing cells acquired the expression of PDGFRbeta or a hematoendothelial epitope CD34. Although Prox-1 labeling was abundant in the area affected by MI, the podoplanin-presenting cells were not consistently Prox-1-positive. The concordance of podoplanin with VEGFR-3 similarly varied. Thus, our data reveal previously unknown phenotypic and structural heterogeneity within the podoplanin-positive cell compartment in the infarcted heart, and suggest an alternate ability of podoplanin-presenting cardiac cells to generate lymphatic endothelium and pro-fibrotic cells, contributing to scar development

    Regulación epigenética del IFN-y en tuberculosis

    Get PDF
    M. tuberculosis (Mtb) es el principal asesino microbiológico en el mundo. Las modificaciones epigenéticas son claves en la plasticidad del sistema inmune y como mediadores entre el ambiente y los fenotipos celulares. El IFN-v, media la respuesta protectiva frente a Mtb, pero se desconocen los mecanismos epigenéticos que regularían su activación y mediarían la susceptibilidad a la tuberculosis.Área: Ciencias Biológicas, Ambiente y Salud

    Endothelialization of a New Dacron Graft in an Experimental Model: Light Microscopy, Electron Microscopy and Immunocytochemistry

    Get PDF
    Two types of synthetic vascular grafts, Dacron Triaxial and Dacron Gelseal Triaxial, were implanted into both the common carotids of sheep. The animals were sacrificed 1, 2, 8, and 16 weeks after surgery. Multiple specimens, obtained from grafts and anastomoses, were studied by light microscopy, transmission and scanning electron microscopy. A parallel immunocytochemical analysis was performed on some specimens. Dacron Triaxial grafts failed to develop a complete neointimal coverage. Myofibroblasts and fibroblasts were the dominant cells in such synthetic graft. Moreover, focal areas of stripping, platelet deposition, and thrombosis were observed at 8 and 16 weeks. In contrast, a stable endothelial coverage developed on the Gelseal Triaxial grafts after 16 weeks

    Conditions currently associated with erythema nodosum in Swiss children

    Get PDF
    A review was made of the 36 paediatric patients in whom the diagnosis of erythema nodosum had been established between 1977 and 1996 at the Department of Paediatrics, University of Bern, Switzerland. Infectious diseases were associated with erythema nodosum in 20 (including 10 streptococcal infections) and non-infectious inflammatory diseases in 8 patients. None of the 36 patients had tuberculosis or had been exposed to sulphonamides, phenytoin or hormonal contraceptives. There were eight patients in whom either the associated disease was not diagnosed, or there was no other disease. Conclusion Most cases of erythema nodosum are nowadays caused by non-mycobacterial infectious diseases or by non-infectious inflammatory disease

    Electron Microscopy of Lipid Deposits in Human Atherosclerosis

    Get PDF
    The filipin probe associated with tannic acid stain was used to study intra-and extracellular lipids in surgically removed human atherosclerotic lesions (n = 20). In particular, intimal thickenings, fatty streaks and fibrolipidic plaques have been investigated by using mainly transmission and scanning electron microscopy. In the intimal thickenings, the lipid deposits were mainly localized in the subendothelial space as homogeneously sized particles (40-140 nm) and more heterogeneous uni-multilamellar vesicles (35-700 nm). Intermediate lipid forms were also observed. In the fatty streaks, the lipid deposits were intracellular and mainly observed in cells with a monocyte/macrophagic phenotype. Lipid inclusions, lipid lysosomal bodies and intracellular cholesterol crystals very similar to those observed in experimentally induced atherosclerosis were documented. In the fibrolipidic plaque the lipid deposits were found both in the intracellular and in the extracellular compartments. Lipids accumulated within arterial macrophages and smooth muscle cells, usually as lipid droplets. Clusters of lipoprotein-like particles (50 nm in diameter) as well as larger uni-multilamellar lipids (700 nm) with an occasional compound appearance were particularly observed bound to elastic tissue and collagen fibers. These morphological observations outline the complexity of lipid metabolism in the various histological aspects of human atherosclerosis

    Healing of Prosthetic Arterial Grafts

    Get PDF
    Numerous synthetic biomaterials have been developed as vascular substitutes. In vitro, ex vivo and in vivo studies have demonstrated that in animals, selected materials, i.e., Dacron and ePTFE (expanded polytetrafluoroethylene) grafts, are successfully incorporated in both the large and the small caliber host arteries through a process which is generally referred to as graft healing. Morphologically, this process consists of a series of complex events including fibrin deposition and degradation, monocyte-macrophage recruitment and flow-oriented cell-layer generation, this last event being the complete endothelialization of the arterial substitute. In contrast to experimental animals, the flow surface of synthetic vascular grafts remains unhealed in humans, particularly in the small caliber conduits. Healing in man consists of graft incorporation by the perigraft fibrous tissue response with a surface covered by more or less compacted, cross-linked fibrin. It is therefore obvious that: i) marked differences in graft healing exist between animals and man; and ii) the usual mechanisms of graft endothelialization are partially ineffective in man. In order to guarantee the patency of synthetic vascular grafts for human small artery bypass, new strategies and approaches have recently been attempted. In particular, the endothelial cell seeding approach has been successfully accomplished in animals and is being experimented in human clinical studies. The problems and results of this biological approach are outlined in this paper
    corecore